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Abstract. 
A new hybrid genetic algorithm was developed which combines a stochastic evolutionary algorithm with a 
deterministic adaptive step steepest descent hill climbing algorithm in order to optimize complex multivariate 
problems. By combining both algorithms computational resources are conserved and the solution converges 
rapidly as compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random 
events such as breeding and mutation. In the adaptive step steepest descent algorithm the solution moves toward 
the lowest surrounding point. Step sizes start big and get progressively smaller, increasing computational 
efficiency. The genetic algorithm ensures the solution samples the entire global search space, thus a global 
minimum is found. The steepest descent method fine tunes the solution by moving it to the nearest local 
minimum. The code was developed, including a graphical user interface, in MATLAB. Additional features such 
as bounding the input, weighting the objective functions individually, and constraining the output are also built 
into the interface. The algorithm developed was used to optimize the response surface models which use process 
variables (feedstock moisture content, die speed, and preheating temperature) to predict pellet properties (pellet 
moisture content, unit, bulk and tapped density, durability, and specific energy consumption). The solution found 
by the hybrid algorithm was validated experimentally. Execution times were decreased by approximately 40%, 
based on 1,0000 trials with each method, using the new hybrid algorithm as compared to using a genetic 
algorithm alone with the same parameters, both developed at INL. Performance of the hybrid algorithm versus 
the commercial Matlab genetic algorithm is investigated. Results show that the hybrid genetic algorithm 
converged to the global maximum for bulk density in one iteration, whereas the commercial genetic algorithm 
took twenty nine iterations to converge.   
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Introduction 
A genetic algorithm is a stochastic optimization method which is based on the phenomenon of natural evolution 
(Simon, 2013; Goldberg 1989). Pragmatic researchers see evolution’s remarkable power as something to be 
emulated. Natural selection eliminates one of the greatest hurdles in software design, i.e. specifying in advance 
all the features of a problem and actions a program should take to deal with them. By harnessing the mechanisms 
of evolution, researchers will be able to “breed” programs that solve problems even when no person can fully 
understand their structure. GAs makes it possible to explore a far greater number of potential solutions to a 
problem than do conventional programs (Holland, 1992). GAs are different from the normal optimization 
techniques and search procedures 1) GAs work with a coding of the parameters set, not the parameters 
themselves, 2) GAs search from a population of points, not a single point, 3) GAs use payoff (objective function) 
information, not derivatives or the other auxiliary knowledge. Figure 1 indicates flow diagram for a regular genetic 
algorithm used in solving the optimization problems. 

 
Figure 1: Flowchart of a regular genetic algorithm 

Advantages and Disadvantages of Genetic Algorithms 
The main advantages of GAs are 1) GA-based approaches are capable of finding a number of optimal solutions 
rather than a single solution (Kalyanmoy, 2000), 2) GA-based approaches are capable of exploring the search 
space more thoroughly with a smaller number performances evaluations than those based on local search, such 
as simulated annealing and tabu search (April et al, 2003) and 3) GA-based approaches are less dependent on 
the good selection of the starting points, and they don’t require neighborhood definition (April et al, 2003), 4) It 
can solve every optimization problem which can be described with the chromosome encoding 5) It solves 
problems with multiple solutions 6)  Since the genetic algorithm execution technique is not dependent on the 
error surface, we can solve multi-dimensional, non-differential, non-continuous, and even non-parametrical 
problems 7) Structural genetic algorithm gives us the possibility to solve the solution structure and solution 
parameter problems at the same time by means of genetic algorithm 8) Genetic algorithm is a method which is 
very easy to understand and it practically does not demand the knowledge of mathematics and 9) Genetic 
algorithms are easily transferred to existing simulations and models. A simple genetic algorithm with operators 
like reproduction, crossover and mutation yields goods results in practical optimization problems. The GAs 
utilizes the stochastic operations like crossover and mutation on a population to make a change of generation. 
Crossover combines substructures of parents to produce new individuals. Crossover is the most characteristic 
operation of GA which is not used in other global search methods such as simulated annealing. Mutation is 
another operation which helps the algorithm to move to a global search space which prevents the solution from 
getting stuck at local space (Simon, 2013). Shankar and Sokhansanj (2010) worked on understanding the effect 
of crossover and mutation rate on function convergence. Not much work is done on understanding the effect of 
the genetic algorithm operators like crossover and mutation, elitism on the function convergence. 
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Like other artificial intelligence techniques, the genetic algorithm cannot assure constant optimization response 
times. Even more, the difference between the shortest and the longest optimization response time is much larger 
than with conventional gradient methods. This unfortunate genetic algorithm property limits the genetic 
algorithm’s use in real time applications. Genetic algorithm applications in controls which are performed in real 
time are limited because of random solutions and convergence, in other words this means that the entire 
population is improving, but this could not be said for an individual within this population. Therefore, it is 
unreasonable to use genetic algorithms for on-line controls in real systems without testing them first on a 
simulation model. Certain optimization problems (they are called variant problems) cannot be solved by means 
of genetic algorithms. This occurs due to poorly known fitness functions which generate bad chromosome blocks 
in spite of the fact that only good chromosome blocks cross-over. There is no absolute assurance that a genetic 
algorithm will find a global optimum. It happens very often when the populations have a lot of subjects. Figure 2 
indicates the possibility how local and global search algorithms can get struck at complex global search spaces. 
Hybridization of genetic algorithm with gradient based search methods can help to overcome some of the 
limitations specific to genetic algorithm while solving complex optimization problems.  The hybridization can help 
to improve the solution search space with every iteration thereby reducing the computation time.   

 
Figure 2: Example of local and global optimum points in function minimization problem 

Gradient Search Method 
Gradient descent is a first-order optimization algorithm (Chapra, 2015). To find a local minimum of a function 
using gradient descent, one takes steps proportional to the negative of the gradient (or of the approximate 
gradient) of the function at the current point. If instead one takes steps proportional to the positive of the gradient, 
one approaches a local maximum of that function; the procedure is then known as gradient ascent. Gradient 
descent is also known as steepest descent, or the method of steepest descent. When known as the latter, 
gradient descent should not be confused with the method of steepest descent for approximating integrals 
(Petrova, 1997). In recent years, sampling-based planning algorithms have met with widespread success due to 
their ability to rapidly discover the connectivity of high-dimensional configuration spaces. Planners such as the 
Probabilistic Roadmap (PRM) and Rapidly-Exploring Random Tree (RRT) algorithms, along with their 
descendants, are now used in a multitude of robotic applications (Kavraki et al., 1996; Kuffiner et al., 2000). Both 
algorithms are typically deployed as part of a two-phase process: first find a feasible path, and then optimize it 
to remove redundant or jerky motion. 
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Objective 
Upon developing the regression models for biomass pellet properties the need arose to find the optimum set of 
input parameters in order to obtain the most desirable output properties for multivariable optimization problems. 
While many tools and algorithms have been created for this purpose there was not software available that could 
implement a rigorous stochastic search coupled with deterministic local optimization while still constraining the 
output and assigning weights to the individual objective functions. In the search for a tool with all of these 
capabilities and features we found none, thus it became expedient to create such a tool. Upon creation of the 
program a user had to be a profound numerical modeler in order to use or modify the program input/output, thus 
a user interface was created to facilitate the use of the tool in the hands of various users who have very little 
background to single and multi-variable optimization techniques. While the tool has been very useful in this work 
and has supported other research efforts, there are more improvements to be made, which will be discussed in 
a future section.  

The overall objective of the present study was to develop a new algorithm which uses both evolutionary and 
gradient search method properties to overcome the limitations of optimum solution getting stuck in a local search 
space in case of complex optimization problems. The specific objectives of the present work are 1) develop single 
and multi-variable optimization software using a hybrid genetic algorithm which can handle single and multi-
variable optimization problems, 2) develop a graphical user interface using the Matlab platform and 3) provide 
flexibility to change the algorithm operators like crossover, mutation, iteration, elitism, population size, tolerance 
persistence, goal, weights, lower and upper constrains for the solution space and three dimensional surface plot 
for the functions tested. 

Materials and Methods 
Hybrid Genetic Algorithm (HGA) Tool 
To solve the multi-objective optimization problem a hybrid genetic algorithm (HGA) was developed. The working 
principle of Genetic Algorithms (GAs) is based on Darwin’s theory of survival of the fittest (Kalyanmoy, 2000; 
Davis, 1991 and Holland, 1992). HGA uses both the genetic algorithm and steepest ascent hill climbing methods 
to reach an optimum solution. In the case of complex optimization problems, the hybrid genetic algorithm will 
help to prevent the solution from getting stuck at local optimum points. Figure 2 depicts the global and local 
optimum points in the function minimization problem. The hill climbing subroutine added to the regular genetic 
algorithm routine helps to move local optimum conditions into the global search space.   

Working Principles of the Hybrid Genetic Algorithm (HGA) 
In GA analysis a random population is initially generated, which is made up of potential candidate solutions for 
the objective function. The individuals in the population are represented by a string of symbols called 
chromosomes. Binary bit strings are used to represent the chromosomes (Davis, 1991; Tumuluru et al., 2013). 
The length of the chromosome is the length of one complete candidate solution, ie, the number of independent 
variables defining the objective function. Each variable in the chromosome is typically referred to as an allele. 
The chromosome selection is based on the goodness of a chromosome in the population and is evaluated over 
a fitness function, the goodness being the solution with the greatest magnitude in the direction of desired optimum 
(maximum or minimum). The parent population which is used to breed the new generation is selected based on 
the Roulette Wheel selection technique. In Roulette Wheel selection, chromosomes with the best fitness values 
have greater chances of being selected, whereas the worse candidates are more likely to be eliminated 
(Lipowski, 2012). The crossover operation generates a new offspring population based on the Roulette wheel 
selection. Single point crossover defines a fixed number of alleles contributed from each parent. The mutation 
operation, which is a bit inversion process, helps to 1) maintain the diversity within the population, 2) inhibit the 
premature convergence of the population, and 3) prevent the population from getting stuck at a local optimum. 
As is the case in nature, mutation occurs by randomly choosing a chromosome and completely changing the 
alleles, thus creating a new random candidate solution. Elitism is built into the model as well. With elitism the 
optimum candidate solutions are preserved. This means that mutation will not affect the best chromosome. 
Elitism also ensures that the optimum solution will carry on to the offspring generation unchanged, thus the 
solution will not regress, but can only improve with each iteration. After the crossover has taken place, the 
offspring generation has the possibility of some random mutations occurring, and with the best chromosome 
preserved, the steepest ascent method is applied to all chromosomes. In the steepest ascent method a Laplacian 
operator is applied to the chromosome to determine the response to perturbation in each allele value. The allele 
that shows the most improvement in moving toward the optimum value is incremented and the Laplacian is 
recalculated from the new chromosome position. This process is repeated until there is no beneficial change in 
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any gradient direction, at which point the step size is reduced and the movement process repeated. This is known 
as adaptive stepping. In adaptive stepping movement stops when the step size reaches a specified tolerance. 

The flow diagram for the hybrid genetic algorithm (HGA) developed is given in Figure 3. The hybrid GA program 
was developed on the Matlab platform with an accompanying graphical user interface (GUI). A user manual was 
written for the software developed to explain in detail regarding how to work with the various operators like elitism, 
crossover, mutation, tolerance, persistence, bounding the optimization problem within the constraints, and 
providing weights to the functions to be optimized. The manual also has some typical examples of the functions 
solved using the new optimization software.  

While hybrid genetic algorithms have gained some attention in recent years (Hart, 1994; El-Mihoub, 2006) there 
still does not exist available software for multi-objective optimization that can constrain the output and apply 
weights to individual objective functions. What’s more, this work has not been applied to biomass densification 
as shown in this work, in which the material properties or objective functions are highly correlated to the 
independent variables and to each other. These differences make the work unique and necessary. 

To illustrate the advantage of the hybrid GA consider the curve shown in Figure 2. Imagine placing thumb tacks 
on the curve at random spots. Now use the lowest tack to determine where to re-pin the highest tacks. Eventually 
you will successfully place a tack on the lowest part of the curve. Now imagine randomly placing marbles instead 
of thumb tacks. Again, the lowest marble is used to determine where the higher marbles are placed again on the 
curve, but with each placement the marble sinks to the lowest spot available. In essence for a hybrid GA the 
placement is governed by natural selection, where the best is more likely to determine the placement of new 
candidates, and the rolling of each marble is analogous to the local search routine that takes each candidate and 
places it at the nearest extreme using local gradient information. 

Algorithm Parameters for Single and Multivariable Optimization Problems 
Population: Population defines the number of candidate solutions to consider for each generation. 

Elitism: Defines the top percentage of parent solutions to transfer to the child generation. 

Crossover: Defines the percentage of the child population to generate from breeding from the parent generation. 
The remaining child population is copied directly from the parent generation. Parents to be copied are selected 
using the Roulette Wheel probability method. Parents that result in fitness values closer to the goal (maximum 
or minimum) are more likely to be copied or used as parents. 

Mutation: Defines the percentage of the child population to mutate. The alleles of the chosen children are 
completely randomized. The most elite or fit solution is not a candidate for mutation. 

Iterations: Is the number of generations to create.  

Lower and Upper Constraints: The lower and upper constraints apply a bound to the results. Constraints are 
imposed during the roulette wheel selection subroutine. A given constraint is assigned a weight value, which is 
used to weight the deviation from the bounds of the results. Using this approach a user can decide which 
objective functions are more important to obtain within the given bounds. Note: the weight values for the 
constraints are not the same weight values for the objective functions. 

Tolerance: The tolerance determines which solutions are returned as possible answers. If a candidate has a 
fitness that is within a certain distance from the optimum solution it is included in the solution set.  

Bounds: Lower bound and upper bound are vectors that define the limit for the independent variables. In the 
single objective example these define the limits for x as 

Lower bound  x  Upper bound 

For the multi-objective optimization example the limits are defined using bounding vectors as  

LB1  x1  UB1 

LB2  x2  UB2 

LB3  x3  UB3 

Where the lower bound = [LB1 LB2 LB3] and the upper bound = [UB1 UB2 UB3]. 

Goal: The goal defines whether to maximize or minimize the fitness function(s). 

Weights: Weights can be assigned to the output of the functions to define importance values for each function in 
reference to the others. 
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Figure 3: Flow diagram of the hybrid genetic algorithm (HGA) developed at Idaho National Laboratory 

Architecture for the Simulation 
For all of the simulations in this work simulations were performed on an Asus X551M Laptop using a 64 bit 
Windows 8 operating system with 4 Gb installed physical RAM and an Intel Celeron CPU with a 2.16 GHz clock 
speed.  

Pelleting Process  

Biomass Feedstock 

Corn stover harvested from farms in Iowa, Boone, in autumn of 2011 was further baled for transportation. At the 
Idaho National Laboratory the baled corn stover was further size reduced using a 50.8 mm screen size in a 
Vermeer HG200 grinder (Vermeer Corporation-Agriculture, Pella, IA, USA). These bigger size corn stover 
particles were further size reduced to smaller grinds using a hammer mill (Bliss Eliminator Hammer mill, model 
E-4424-TF, manufactured by Bliss Industries, Ponca City, OK, USA) fitted with 4.8 mm screen size (Tumuluru, 
2014). The ground corn stover was stored in air-tight containers and was measured for properties such as 
moisture, bulk, and tapped densities. Further, the moisture content of the corn stover was adjusted to the desired 
moisture levels based on the experimental design. 

High Moisture Pelleting Process (HMPP) 

About 3 kg of corn stover, with calculated amounts of water, were mixed in a ribbon blender (Model: RB 500, 
Colorado Mill Equipment, Canon City, CO, USA), to adjust the moisture content to desired levels based on the 
experimental design. The moisture-adjusted corn stover was stored overnight in a cold storage unit set at 
approximately 4 °C (Tumuluru, 2014 & 2015). The moisture-adjusted corn stover was then loaded into the feeder 
hopper of the pellet mill, where it was preheated for about 4-5 min at different temperatures based on 
experimental design. The preheated biomass was fed continuously using the feeder, and care was taken that 
there were no flow irregularities inside the pellet mill (Tumuluru, 2014 & 2015). The pellets produced were then 
cooled using a horizontal cooler to reduce the pellet moisture content. The moisture content of the pellets after 
cooling was measured to determine how much moisture is lost due to preheating, pelleting, and cooling. As the 
moisture in the pellets after the cooling step was found to be high, pellets were further dried in a mechanical oven 
at 70 °C for about 2–4 hours to reduce the moisture content to about 7–9 % (w.b.) for safe storage without any 
microbial degradation. These dried pellets were immediately further analyzed for physical properties such as 
unit, bulk, and tapped density, and durability (Tumuluru, 2014 & 2015).  
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Experimental Conditions and Design 

All of the pelleting experiments were conducted at one particle size (i.e., biomass ground using Bliss Eliminator 
Hammer mill, fitted with a 4.8 mm screen) using an 8 mm flat-die pellet mill. The process variables selected were 
feedstock moisture content (28-38%), die speed (40-60 Hz) and preheating temperature (30-110°C). Table 1 
indicates the coded and actual levels of the process variables used in the experimental design. An extended Box 
and Behnken design was used to generate the experimental data for the physical properties of the pellets 
produced and specific energy consumption of the high moisture pelleting process. Tumuluru (2014) has 
discussed in detail the process for making pellets from high moisture corn stover. The experimental data obtained 
was used to develop the response surface models.  

Table 1: Experimental conditions used for high moisture pelleting studies 

Process Conditions Coded Levels 

-1 0 +1 

Feedstock Moisture Content (%, w.b.) 28 33 38 

Die Speed (Hz) 40 50 60 

Preheating Temperature (°C) 30 70 110 

Pellet Properties Measurement 
Pellet Moisture, Unit and Bulk Density 

The moisture content of raw and pelleted corn stover was measured by drying 50 g samples in a heated 
convection oven set at 105 °C for 24 hours following ASABE Standards, (ASABE Standards, 2007). The bulk 
density of pellets produced was determined based on ASABE Standard S269.4 (ASABE Standards, 2007).  

Durability 

Durability of pellets was determined by tumbling the test sample at 50 rpm for 10 min, in a dust-tight enclosure.  
 

 
 ( 1 ) 

Specific Energy Consumption (kWhr/ton) 

The power demand in kilowatts is calculated using ( 2 ) provided by the variable frequency drive (VFD) vendor 
for the pellet mill. This equation calculates kW based on the % motor power consumed. Vendor provided 
calculation for power (kW):  

 

 ( 2 ) 

 % motor power = Data recorded using labview software during running of the pellet mill  

 Nominal size of the pellet mill motor = 10HP;  

 Approximate power losses of the VFD=114 W  
 

 
( 3 

)

Note: The pellet mill was run at 40, 50 and 60 Hz speeds and with no load to record the power (kW). 

Objective Functions 
The objective functions used were the response surface models developed for bulk density (BD), durability (D) 
and specific energy consumption (SEC), pellet moisture content (%, w.b.), (Table 2). The hybrid genetic algorithm 
(HGA) was used to create a multi-objective GA solver which optimizes different functions simultaneously. The 
program developed can simultaneously optimize any number of objective functions for predicting the desirable 
process conditions for either maximization or minimization of objective functions.   
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Table 2: Response surface models developed for pellet properties and energy consumption 

Physical 
Property Model R2

Bulk Density 
(kg/m3)  0.85 

Durability (%)  0.83 

Specific Energy 
Consumption 

(kWhr/ton)  
0.86 

Pellet Moisture 
Content          (%, 

w.b.)  0.93 

Unit Density 
(kg/m3)  

 

0.86 

Tapped Density 
(kg/m3)  0.85 

Note: x1: Feedstock moisture content (%, w.b.); x2: Die speed (Hz); x3: Preheating temperature (°C) and R2: 
Coefficient of determination 

Results & Discussion 
Individual Optimum Process Conditions 
The objective functions developed for pelleting process conditions for the quality and energy consumption are 
used as the objective functions for the testing the new hybrid genetic algorithm developed. Table 2 gives the 
equations used for the testing. 

Common Optimum Process Conditions using the Hybrid Genetic Algorithm (HGA) 
The objective functions used to find the common optimum process condition are the response surface models 
(second-order polynomial regression equations) obtained for BD, D, and SEC (Table 2). A common equation (( 
4 )) was used to find the common optimum process condition. When this equation (( 4 )) is subjected to 
maximization using the hybrid genetic algorithm, the resulting solution will help to maximize density and durability 
and minimize specific energy consumption.   

 
 ( 4 ) 

A random population of 100 chromosomes and crossover and mutation probabilities of 0.80 and 0.99, 
respectively, were used based on the earlier studies conducted by Shankar and Bandyopadhyay (2004); Shankar 
et al. (2010); Shankar and Sokhansanj (2010) and Tumuluru et al. (2013) on optimization of extruded biomaterial 
properties using a simple genetic algorithm. The search for the optimum was carried up to 100 iterations.  

Single and Multi-Function Optimization 
Figure 4 shows the Multiple Objective Optimization Tool developed in this work. Area 1 is where inputs for single 
objective optimization are provided by the user. This type of input is common in all genetic algorithm optimization 
programs and tools. Area 2 is where multi-objective inputs are defined. The main benefit of this tool is the ability 
to constrain the output as shown and to assign weights to the objective functions as the comparison demands. 
Another feature that was missing from most other software programs was the ability to choose whether to 
maximize or to minimize the objective function. While this may seem like a small feature, keeping consistent 
approaches reduces complexity and thus reduces the possibility of human error in both obtaining and interpreting 
the results. Most genetic algorithm tools, such as that of Matlab for example, in order to find the maximum of an 
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objective function the user must negate the objective function and then negate the result. Switching between 
minimizing and maximizing in this manner can be troublesome. Area 3 is where immediate results are displayed 
to the user. A more comprehensive set of results, including the entire final population, intermediate population 
and fitness information, final fitness and corresponding inputs, etc. can be generated by using the “Export 
Results” button. Areas 4 and 5 give the user a method of visualizing the functions being optimized. In area 4 the 
user supplies visualization inputs such as the function to be plotted and the appropriate ranges for the input 
variables. The resulting plot is shown in area 5.  

 
Figure 4: The user front-end of the Multi-Objective Optimization Tool 

Singular Optimization Problem 
The specific energy equation (Table 2) was used to test single optimization problem. Figure 5 shows the optimum 
and mean fitness values for each generation, both with and without the steepest descent algorithm included in 
the simulation. The bounds for the input variables are given as 

28 %w.b.  feedstock moisture  38 %w.b. 

40 Hz  die rotational frequency  60 Hz 

30 oC  feedstock temperature  110 oC 

For each simulation 100 candidates comprised each population, elitism preserved the top 10% of the population, 
crossover was applied to 80% of the population, 1% of the population was randomly mutated, and the simulation 
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terminated when 100 generations were made or when the absolute relative error between the population mean 
and the population optimum was below 1E-12. This allowed for a timed execution. Normally a genetic algorithm 
is run for a set number of iterations. If the comparison were done with fixed iterations both codes would run for 
the same amount of time and use roughly the same computational resources. By setting a relative convergence 
criterion the code was stopped when it was within a tolerance, 1E-12. The results below show the performance 
until the convergence criterion was met. The optimum conditions were those that minimized specific energy 
consumption and the other quality attributes (minimum of pellet moisture content, maximum of unit, bulk and 
tapped density and durability) obtained using hybrid genetic algorithm, are given in Table 3. 

Table 3: Optimum process conditions for the minimization of each individual objective function 

 

Property Goal Value

Conditions 

 Moisture 
(%w.b.) 

Die
Speed

(Hz) 
Temperature 

(oC) 

Single
Objective
Optimization

Bulk Density 
(kg/m3) Max 566 29.0 59.7 67.0 

Tapped Density 
(kg/m3) Max 649 29.7 59.8 80.3 

Unit Density 
(kg/m3) Max 1,085 29.9 59.7 78.4 

Durability Max 98 29.5 59.6 73.4 

Moisture Content 
(%w.b.) Min 14 28.2 40.2 110.0 

Specific Energy 
Consumption 
(kWhr/ton) 

Min 43 28.1 60.0 30.1 

 
Both the hybrid and non-hybrid codes used to optimize this problem were developed at Idaho National 
Laboratory. The only computational difference between the codes is the implementation of a local search routine 
during the optimization loop. Both codes were written in Matlab and have not yet been optimized for performance. 
Because most, if not all, commercial GA codes are optimized to some degree, the comparison for performance 
considerations is best made using codes that are exactly similar with the only difference being the improvement 
of interest, in this case the addition of a local gradient search routine.  

It can be seen in Figure 5 that the case of not using the steepest descent converges more slowly than the hybrid 
case. The mean values of the hybrid algorithm drop dramatically compared to the non-hybrid case. This is 
attributed to the fact that each candidate solution is optimized and therefore the entire population is at a local 
minimum or maximum, whereas in the non-hybrid case candidates are extremely likely to be resting on a gradient 
instead of an extrema. 

The goal of this algorithm is to ultimately save time and resources for computation and optimization. Therefore a 
comparison needs to be made regarding computational time for the two methods. For this reason constraints are 
not considered in these simulations. Figure 6 shows the mean program execution times for the program to 
converge on a solution. Because the algorithm is stochastic in nature a direct comparison cannot be made. 
Rather a statistical comparison must be used to bound the true time required for convergence within a confidence 
interval at a specified confidence value. Table 4 gives the number of iterations and the execution time required 
for methods as well as upper and lower bounds at 95% confidence levels for the optimization of specific energy 
consumption. The results show that even with the added computation of the steepest descent method the solution 
converges much faster and thus time is conserved by not having to perform more iterations. 

Table 4: Iterations and execution times required for convergence between the fitness mean and fitness minimum/maximum for 
specific energy consumption. 1,000 trials were used in each case 

Non-Hybrid Hybrid 
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Mean Iterations 20.195 14.027 

95% Interval 19.911 <i< 20.479 13.886 <i< 14.168 

Mean Times (s) 4.362 3.170 

95% Interval (s) 4.301 < t < 4.423 3.139 < t < 3.200 

 
Figure 5: Best and average fitness values for 25 generations both without (top) and with (bottom) the steepest descent algorithm

being implemented in the optimization of specific energy consumption as given in Table 2 

Multi-Function Optimization 
( 4 ) was used as the objective function to test the multi-objective optimization capability of the new hybrid 
genetic algorithm developed. A similar analysis as the last example was done to test the performance 
improvement by using the regular and hybrid genetic algorithms developed at INL. The bounds for feedstock 
moisture, die rotational frequency and feedstock temperature are the same as given above: 28-38 %w.b., 40-
60 Hz, 30-110 oC, respectively. Figure 7 shows the optimum and mean fitness values for each generation, both 
with and without the steepest descent algorithm included in the simulation. Clearly there is a faster rate of 
convergence with the hybrid simulation. Figure 8 shows the mean execution times for 1,000 trial simulations.  
Statistical comparisons and confidence intervals are given in Table 6 for the multi-objective optimization. In the 
same manner as the last optimization example, the solution was considered to have converged when the 
difference between the mean population fitness and the best population fitness was less than 1E-12. The 
optimum process conditions obtained using hybrid genetic algorithm using( 4 )are given in  

Table 5. 
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Figure 6: Mean execution times after each trial for 1,000 trials for the single objective optimization of specific energy 
consumption given in Table 2 

Table 5: Optimum process conditions for each objective function individually as well as combined for multi-objective 
optimization 

 

Property Goal Value

Process Conditions 

 Moisture 
(%w.b.) 

Die 
Speed

(Hz) 

Preheating 
temperature 

(oC) 

Multi-
Objective 

Optimization 

Bulk Density (kg/m3) Max 561 

30.0 59.6 75.6 

Tapped Density (kg/m3) Max 648 

Unit Density (kg/m3) Max 1,085 

Durability Max 98 

Moisture Content (%w.b.) Min 24 

Specific Energy 
Consumption (kWhr/ton) Min 56 

Table 6: Iterations and execution times required for convergence between the fitness mean and fitness minimum/maximum for all 
of the pellet properties given in Table 2. 1,000 trials were used in each case 

Non-Hybrid Hybrid 

Mean Iterations 20.088 13.750 

95% Interval 19.819 < i < 20.357 13.638 < i < 13.862 

Mean Times (s) 4.456 3.249 

95% Interval (s) 4.391 < t < 4.520 3.207 < t < 3.292 
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Figure 7: Best and average fitness values for first 25 generations of the multi-objective optimization of all the pellet properties in 

Table 2 

 
Figure 8: Mean execution times for 1,000 trials of the multi-objective optimization of the pellet properties given in Table 2 

Comparison of Hybrid GA and the Commercial Matlab GA 
The performance improvement in reducing the iterations and time required for convergence has been studied in 
the previous examples. An observation needs to be made to show the convergence of the hybrid GA as 
compared to readily available commercial software. For this example the GA from the commercial code Matlab 
is used to optimize a single objective function: bulk density from Table 2. Matlab does not give the user the ability 
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to easily constrain the output, thus constraints are also not considered in this example.  

The bounds for feedstock moisture, die rotational frequency and feedstock temperature are the same as given 
above: 28-38 %w.b., 40-60 Hz, 30-110o C, respectively. Unlike the previous examples, execution times are not 
considered for this example, thus the convergence criteria is a fixed number of 100 iterations (generations) for 
each case. Figure 9 shows the fitness of the best candidate from each generation for both the hybrid GA from 
INL (red square) and the commercial Matlab GA (blue diamonds). It can be seen that the hybrid GA reaches the 
optimum in a single iteration. In this example the bulk density function is uni-modal in the region of interest. Thus 
on the first iteration the local search routine optimizes the best candidate locally by placing that candidate on the 
local peak, which coincidentally is also the global peak for this function in this range. Similar results are obtained 
using the hybrid GA for the remaining functions in Table 2 using the same inputs given here.  

 
Figure 9: Fitness of the best candidate at each generation for both the commercial 

Conclusions and Future Work 
While the program works sufficiently well it has room for improvement. The area likely to produce the greatest 
improvement is in the deterministic subroutine implementation. Currently an adaptive step steepest descent 
method optimizes each candidate before they are used for breeding. While effective this approach can be less 
efficient than other methods. An optimum deterministic method needs to be identified and applied in place of the 
steepest descent method in order to maximize the program’s performance. Another are of interest is in the 
determination of a complete Pareto front, or Pareto set of solutions. Currently the program outputs any solution 
within a specified tolerance of the best solution. While this is convenient for identifying potential input 
configurations, this approach does not have a mathematical basis and should be replaced in future revisions.  

The results demonstrate the real-time improvement in execution time and iterations required for convergence on 
the optimum set of input parameters. The deterministic optimization algorithm implemented in parallel with the 
stochastic genetic algorithm is simple, yet effective. By including the steepest descent algorithm each candidate 
rests on a local extrema before being used to generate the subsequent population. This brings the population 
fitness much closer to the goal and enhances the ability of the genetic algorithm to correctly isolate the global 
optimum.  
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